Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Front Immunol ; 13: 842535, 2022.
Article in English | MEDLINE | ID: covidwho-1702591

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.


Subject(s)
Immunomodulation/immunology , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Immune Evasion/immunology , Macrophages/cytology , Monocytes/cytology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/cytology
2.
Front Immunol ; 12: 761382, 2021.
Article in English | MEDLINE | ID: covidwho-1638133

ABSTRACT

The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.


Subject(s)
COVID-19/prevention & control , Exercise/physiology , SARS-CoV-2/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Aging , COVID-19/pathology , Comorbidity , Humans , Immunocompromised Host/immunology , Immunomodulation/immunology , Pandemics , Th1-Th2 Balance
3.
Scand J Immunol ; 95(2): e13131, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1583260

ABSTRACT

The role of the immune system against coronavirus disease 2019 (COVID-19) is unknown in many aspects, and the protective or pathologic mechanisms of the immune response are poorly understood. Pro-inflammatory cytokine release and a consequent cytokine storm can lead to acute respiratory distress syndrome (ARDS) and result in multi-organ failure. There are many T cell subsets during anti-viral immunity. The Th17-associated response, as a pro-inflammatory pathway, and its consequent outcomes in many autoimmune disorders play a fundamental role in progression of systemic hyper-inflammation during COVID-19. Therapeutic strategies based on immunomodulation therapy could be helpful for targeting hyper-inflammatory immune responses in COVID-19, especially Th17-related inflammation and hyper-cytokinemia. Cell-based immunotherapeutic approaches including mesenchymal stem cells (MSCs), tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs) seem to be promising strategies as orchestrators of the immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we highlight Th17-related immunopathology of SARS-CoV-2 infection and discuss cell-based immunomodulatory strategies and their mechanisms for regulation of the hyper-inflammation during COVID-19.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Cytokine Release Syndrome/pathology , Immunomodulation/immunology , Th17 Cells/immunology , Adoptive Transfer/methods , COVID-19/immunology , Cell- and Tissue-Based Therapy/methods , Cytokines/blood , Dendritic Cells/transplantation , Humans , Mesenchymal Stem Cell Transplantation , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/transplantation
4.
Chem Biol Interact ; 352: 109776, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1568541

ABSTRACT

Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1ß by PCR have been the most widely used to screen the therapeutics under investigation.


Subject(s)
Immunity, Innate/immunology , Immunomodulation/immunology , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Inflammation/immunology , Phagocytosis/immunology
5.
Front Biosci (Landmark Ed) ; 26(10): 948-961, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1498509

ABSTRACT

Background: Corona Virus Disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2). The primary pathogenesis is over-activation of the immune system. SARS-CoV-2 continues to mutate and spread rapidly and no effective treatment options are yet available. Mesenchymal stem cells (MSCs) are known to induce anti-inflammatory macrophages, regulatory T cells and dendritic cells. There are a rapidly increasing number of clinical investigations of cell-based therapy approaches for COVID-19. Objective: To summarize the pathogenic mechanism of SARS-CoV-2, and systematically formulated the immunomodulation of COVID-19 by MSCs and their exosomes, as well as research progress. Method: Searching PubMed, clinicaltrials.gov and Chictr.cn for eligible studies to be published or registered by May 2021. Main keywords and search strategies were as follows: ((Mesenchymal stem cells) OR (MSCs)) AND (COVID-19). Results: MSCs regulate the immune system to prevent cytokine release syndrome (CRS) and to promote endogenous repair by releasing various paracrine factors and exosomes. Conclusions: MSC therapy is thus a promising candidate for COVID-19.


Subject(s)
COVID-19/therapy , Exosomes/transplantation , Immunomodulation/immunology , Lung Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , COVID-19/epidemiology , COVID-19/virology , Clinical Trials as Topic , Exosomes/immunology , Exosomes/metabolism , Humans , Lung Injury/physiopathology , Lung Injury/virology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Pandemics , Regeneration/immunology , Regeneration/physiology , SARS-CoV-2/immunology , SARS-CoV-2/physiology
6.
Scand J Immunol ; 95(2): e13111, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1488267

ABSTRACT

The mammalian lactoperoxidase system, consisting of lactoperoxidase and the H2 O2 -producing enzyme duox, is our first line of defence against airborne microbes. This system catalyses the production of hypoiodite and hypoiodous acid in the presence of sufficient iodine. These products are highly efficient at destroying the H1N1 virus and the respiratory syncytial virus (RSV). Japan has not been affected as much as other nations during the COVID-19 pandemic (death rate about 10% of the United States), and we think this is due to a diet high in iodine. With this in mind, we suggest four actions to prevent SARS-CoV-2 infections. First, health professionals should study the preventative effect of increasing iodine in the diets of the aged, institutionalized, diabetics andsmokers. Second, the recommended daily intake (RDI) for iodine should be significantly increased, to at least double, the current RDI. Governments should encourage the use and distribution of cheap iodized salts, kelp and seaweed. Third, more research should be done around the physiology and the protective effects of the lactoperoxidase system. Finally, the degradation products of the SARS-CoV-2 viral particle by hypoiodite and hypoiodous acid should be characterized; portions of the damaged particle are likely to elicit stronger immunity and better vaccines.


Subject(s)
COVID-19/diet therapy , COVID-19/prevention & control , Diet Therapy/methods , Iodine/administration & dosage , SARS-CoV-2/drug effects , COVID-19/epidemiology , Diet , Humans , Immunomodulation/immunology , Iodine Compounds/metabolism , Japan/epidemiology , Lactoperoxidase/metabolism
8.
Front Immunol ; 12: 716407, 2021.
Article in English | MEDLINE | ID: covidwho-1359193

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized, lipid bilayer-enclosed structures, share structural similarities with viruses secreted from all types of cells, including those lining the respiratory tract. Importantly, the interplay between exosomes and viruses could be potentially exploited for antiviral drug and vaccine development. Exosomes are produced by virus-infected cells and play crucial roles in mediating communication between infected and uninfected cells. SARS-CoV-2 modulates the production and composition of exosomes, and can exploit exosome formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Exosomes have been exploited for therapeutic benefits in patients afflicted with various diseases including COVID-19. Furthermore, the administration of exosomes loaded with immunomodulatory cargo in combination with antiviral drugs represents a novel intervention for the treatment of diseases such as COVID-19. In particular, exosomes derived from mesenchymal stem cells (MSCs) are used as cell-free therapeutic agents. Mesenchymal stem cell derived exosomes reduces the cytokine storm and reverse the inhibition of host anti-viral defenses associated with COVID-19 and also enhances mitochondrial function repair lung injuries. We discuss the role of exosomes in relation to transmission, infection, diagnosis, treatment, therapeutics, drug delivery, and vaccines, and present some future perspectives regarding their use for combating COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/therapy , Drug Carriers/therapeutic use , Exosomes/metabolism , Immunomodulation/immunology , Biomarkers/metabolism , COVID-19/pathology , COVID-19/transmission , Cytokine Release Syndrome/therapy , Humans , Mesenchymal Stem Cells/immunology , SARS-CoV-2/immunology
9.
Front Immunol ; 12: 698672, 2021.
Article in English | MEDLINE | ID: covidwho-1295644

ABSTRACT

The world is currently experiencing the coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-2 (SARS-CoV-2). Its global spread has resulted in millions of confirmed infections and deaths. While the global pandemic continues to grow, the availability of drugs to treat COVID-19 infections remains limited to supportive treatments. Moreover, the current speed of vaccination campaigns in many countries has been slow. Natural substrates with biological immunomodulatory activity, such as glucans, may represent an adjuvant therapeutic agent to treat SARS-CoV-2. AM3, a natural glycophosphopeptical, has previously been shown to effectively slow, with no side effects, the progression of infectious respiratory diseases by regulating effects on innate and adaptive immunity in experimental models. No clinical studies, however, exist on the use of AM3 in SARS-CoV-2 infected patients. This review aims to summarize the beneficial effects of AM3 on respiratory diseases, the inflammatory response, modulation of immune response, and attenuation of muscle. It will also discuss its potential effects as an immune system adjuvant for the treatment of COVID-19 infections and adjuvant for SARS-CoV-2 vaccination.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/diet therapy , Calcium Phosphates/pharmacology , Dietary Supplements , Glycopeptides/pharmacology , Immunomodulation/immunology , SARS-CoV-2/drug effects , COVID-19 Vaccines/immunology , Cytokines/immunology , Humans , SARS-CoV-2/immunology , Vaccination
10.
Front Immunol ; 12: 659621, 2021.
Article in English | MEDLINE | ID: covidwho-1285289

ABSTRACT

Methods for suppressing the host immune system over the long term and improving transplantation tolerance remain a primary issue in organ transplantation. Cell therapy is an emerging therapeutic strategy for immunomodulation after transplantation. Mesenchymal stem cells (MSCs) are adult multipotent stem cells with wide differentiation potential and immunosuppressive properties, which are mostly used in regenerative medicine and immunomodulation. In addition, emerging research suggests that MSC-derived exosomes have the same therapeutic effects as MSCs in many diseases, while avoiding many of the risks associated with cell transplantation. Their unique immunomodulatory properties are particularly important in the immune system-overactive graft environment. In this paper, we review the effects of MSC-derived exosomes in the immune regulation mechanism after organ transplantation and graft-versus-host disease (GvHD) from various perspectives, including immunosuppression, influencing factors, anti-inflammatory properties, mediation of tissue repair and regeneration, and the induction of immune tolerance. At present, the great potential of MSC-derived exosomes in immunotherapy has attracted a great deal of attention. Furthermore, we discuss the latest insights on MSC-derived exosomes in organ transplantation and GvHD, especially its commercial production concepts, which aim to provide new strategies for improving the prognosis of organ transplantation patients.


Subject(s)
Exosomes/immunology , Immunomodulation/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Organ Transplantation/methods , Transplantation Tolerance/immunology , Adult , Exosomes/metabolism , Graft vs Host Disease/immunology , Humans , Mesenchymal Stem Cells/metabolism , Regenerative Medicine/methods
11.
Int J Mol Sci ; 22(9)2021 May 10.
Article in English | MEDLINE | ID: covidwho-1231496

ABSTRACT

In addition to its canonical functions, vitamin D has been proposed to be an important mediator of the immune system. Despite ample sunshine, vitamin D deficiency is prevalent (>80%) in the Middle East, resulting in a high rate of supplementation. However, the underlying molecular mechanisms of the specific regimen prescribed and the potential factors affecting an individual's response to vitamin D supplementation are not well characterized. Our objective is to describe the changes in the blood transcriptome and explore the potential mechanisms associated with vitamin D3 supplementation in one hundred vitamin D-deficient women who were given a weekly oral dose (50,000 IU) of vitamin D3 for three months. A high-throughput targeted PCR, composed of 264 genes representing the important blood transcriptomic fingerprints of health and disease states, was performed on pre and post-supplementation blood samples to profile the molecular response to vitamin D3. We identified 54 differentially expressed genes that were strongly modulated by vitamin D3 supplementation. Network analyses showed significant changes in the immune-related pathways such as TLR4/CD14 and IFN receptors, and catabolic processes related to NF-kB, which were subsequently confirmed by gene ontology enrichment analyses. We proposed a model for vitamin D3 response based on the expression changes of molecules involved in the receptor-mediated intra-cellular signaling pathways and the ensuing predicted effects on cytokine production. Overall, vitamin D3 has a strong effect on the immune system, G-coupled protein receptor signaling, and the ubiquitin system. We highlighted the major molecular changes and biological processes induced by vitamin D3, which will help to further investigate the effectiveness of vitamin D3 supplementation among individuals in the Middle East as well as other regions.


Subject(s)
Cholecalciferol/genetics , Immunomodulation/immunology , Lipopolysaccharide Receptors/genetics , Toll-Like Receptor 4/genetics , Vitamin D/genetics , Adolescent , Adult , Cholecalciferol/administration & dosage , Cholecalciferol/immunology , Dietary Supplements , Female , Gene Expression/drug effects , Humans , Immunomodulation/drug effects , Nutrition Therapy , Vitamin D/immunology , Vitamin D Deficiency/diet therapy , Vitamin D Deficiency/genetics , Vitamin D Deficiency/immunology , Vitamin D Deficiency/pathology , Young Adult
12.
J Med Virol ; 93(3): 1496-1505, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196462

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has kept the whole world in tenterhooks due to its severe life-threatening infectious disease, COVID-19. The virus is distinct from its cousins, SARS-CoV and MERS-CoV in terms of severity of the infection. The obligated killing properties of the SARS-CoV-2 virus is mediated by its unique structure. Efforts for developing vaccines for COVID-19 are ongoing, but it is unlikely to be available in the immediate future. Due to the absence of precise treatment, the investigators are discovering other effective, protective, and healing choices. However, the lower than a predictable number of SARS-CoV-2 cases in countries with fragile health systems is mystifying. Recently, there has been a buzz about the protective effect of Bacille Calmette-Guérin (BCG) vaccine in COVID-19 through long-term boosting of trained immunity. Based on epidemiological correlations, we link up that BCG vaccination adopted by different countries might influence the SARS-CoV-2 transmission patterns and/or COVID-19 associated mortality through the vaccine's capacity to confer heterologous protection. A number of clinical studies are underway to investigate this possibility but even if they prove effective-many questions will remain. Moreover, responsible stewardship of the BCG vaccine in the context of the COVID-19 epidemic is directly needed.


Subject(s)
BCG Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Humans , Immunization Programs , Immunomodulation/immunology , Vaccination
13.
Stem Cells Dev ; 30(9): 459-472, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1132412

ABSTRACT

Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome/prevention & control , Lung Injury/prevention & control , Mesenchymal Stem Cell Transplantation/methods , Pulmonary Fibrosis/prevention & control , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Humans , Immunomodulation/immunology , Mesenchymal Stem Cells/cytology , Oxidative Stress , SARS-CoV-2/immunology
14.
Cell Immunol ; 361: 104287, 2021 03.
Article in English | MEDLINE | ID: covidwho-1092989

ABSTRACT

Galectin-9 (Gal-9) is a ß-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.


Subject(s)
Galectins/analysis , Galectins/metabolism , Immunomodulation/immunology , Biomarkers/blood , Cell Differentiation , Cell Proliferation , Galectins/genetics , Humans , Severity of Illness Index , Signal Transduction
16.
Stem Cell Rev Rep ; 17(1): 176-192, 2021 02.
Article in English | MEDLINE | ID: covidwho-1023354

ABSTRACT

With the outbreak of coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world has been facing an unprecedented challenge. Considering the lack of appropriate therapy for COVID-19, it is crucial to develop effective treatments instead of supportive approaches. Mesenchymal stem cells (MSCs) as multipotent stromal cells have been shown to possess treating potency through inhibiting or modulating the pathological events in COVID-19. MSCs and their exosomes participate in immunomodulation by controlling cell-mediated immunity and cytokine release. Furthermore, they repair the renin-angiotensin-aldosterone system (RAAS) malfunction, increase alveolar fluid clearance, and reduce the chance of hypercoagulation. Besides the lung, which is the primary target of SARS-CoV-2, the heart, kidney, nervous system, and gastrointestinal tract are also affected by COVID-19. Thus, the efficacy of targeting these organs via different delivery routes of MSCs and their exosomes should be evaluated to ensure safe and effective MSCs administration in COVID-19. This review focuses on the proposed therapeutic mechanisms and delivery routes of MSCs and their exosomes to the damaged organs. It also discusses the possible application of primed and genetically modified MSCs as a promising drug delivery system in COVID-19. Moreover, the recent advances in the clinical trials of MSCs and MSCs-derived exosomes as one of the promising therapeutic approaches in COVID-19 have been reviewed.


Subject(s)
COVID-19/therapy , Immunomodulation/immunology , Lung/immunology , Mesenchymal Stem Cell Transplantation , COVID-19/immunology , COVID-19/virology , Exosomes/immunology , Humans , Lung/pathology , Lung/virology , Mesenchymal Stem Cells/immunology , SARS-CoV-2/pathogenicity
17.
Cardiovasc Drugs Ther ; 35(2): 231-247, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1009155

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic poses a serious global threat to human health and the economy. Based on accumulating evidence, its continuous progression involves not only pulmonary injury but also damage to the cardiovascular system due to intertwined pathophysiological risks. As a point of convergence in the pathophysiologic process between COVID-19 and heart failure (HF), cytokine storm induces the progression of COVID-19 in patients presenting pre-existing or new onset myocardial damage and even HF. Cytokine storm, as a trigger of the progression of HF in patients with COVID-19, has become a novel focus to explore therapies for target populations. In this review, we briefly introduce the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and illuminate the mechanism and links among COVID-19, cytokine storm, and HF. Furthermore, we discuss drugs and therapeutic targets for patients with COVID-19 and HF.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Cytokine Release Syndrome , Heart Failure , SARS-CoV-2 , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Cytokine Release Syndrome/physiopathology , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Disease Progression , Heart Failure/diagnosis , Heart Failure/immunology , Heart Failure/therapy , Humans , Immunomodulation/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology
18.
J Antimicrob Chemother ; 76(2): 283-285, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-889571

ABSTRACT

Severe COVID-19 is a biphasic illness, with an initial viral replication phase, followed by a cascade of inflammatory events. Progression to severe disease is predominantly a function of the inflammatory cascade, rather than viral replication per se. This understanding can be effectively translated to changing our approach in managing the disease. The natural course of disease offers us separate windows of specific time intervals to administer either antiviral or immunomodulatory therapy. Instituting the right attack at the right time would maximize the benefit of treatment. This concept must also be factored into studies that assess the efficacy of antivirals and immunomodulatory agents against COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Immunomodulation/drug effects , Immunosuppressive Agents/administration & dosage , Time-to-Treatment , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Cytokines/blood , Disease Progression , Humans , Immunomodulation/immunology , Immunosuppressive Agents/therapeutic use , SARS-CoV-2/drug effects , Virus Replication/drug effects
19.
Stem Cell Rev Rep ; 17(1): 113-131, 2021 02.
Article in English | MEDLINE | ID: covidwho-754287

ABSTRACT

The novel virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) caused the Corona Virus Disease-2019 (COVID-19) outbreak in Wuhan, Hubei province of China. This virus disseminated rapidly and reached to an unprecedented pandemic proportion in more than 213 nations with a large number of fatalities. The hypersecretion of pro-inflammatory cytokines is the main cause of mortality and morbidity due to COVID-19, therefore strategies that avert the cytokine storm may play a crucial role in abating the severity of COVID-19. This review highlights the minute details of SARS-CoV-2, its genomic organization, genomic variations within structural and non-structural proteins and viral progression mechanism in human beings. The approaches like antiviral strategies are discussed, including drugs that obstruct viral propagation and suppress the pro-inflammatory cytokines. This compilation emphasizes Mesenchymal Stem Cells (MSCs) based therapy alone or in combination with other therapeutics as an attractive curative approach for COVID-19 pandemic. The MSCs and its secretome, including antimicrobial peptides (AMPs) have various capabilities, for instance, immunomodulation, regeneration, antimicrobial properties, potential for attenuating the cytokine storm and bare minimum chances of being infected with SARS-CoV-2 virus. The immunomodulatory property of MSCs affects inflammatory state and regulates immune response during SARS-CoV-2 infection. However, as of now, there is no WHO-approved MSCs based therapy for the treatment of COVID-19 infection. Graphical abstract.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Cytokines/immunology , Humans , Immunomodulation/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology
20.
Endocrinology ; 161(9)2020 09 01.
Article in English | MEDLINE | ID: covidwho-690822

ABSTRACT

Severe outcomes and death from the novel coronavirus disease 2019 (COVID-19) appear to be characterized by an exaggerated immune response with hypercytokinemia leading to inflammatory infiltration of the lungs and acute respiratory distress syndrome. Risk of severe COVID-19 outcomes is consistently lower in women than men worldwide, suggesting that female biological sex is instrumental in protection. This mini-review discusses the immunomodulatory and anti-inflammatory actions of high physiological concentrations of the steroids 17ß-estradiol (E2) and progesterone (P4). We review how E2 and P4 favor a state of decreased innate immune inflammatory response while enhancing immune tolerance and antibody production. We discuss how the combination of E2 and P4 may improve the immune dysregulation that leads to the COVID-19 cytokine storm. It is intended to stimulate novel consideration of the biological forces that are protective in women compared to men, and to therapeutically harness these factors to mitigate COVID-19 morbidity and mortality.


Subject(s)
Coronavirus Infections/immunology , Estradiol/immunology , Immunomodulation/immunology , Pneumonia, Viral/immunology , Progesterone/immunology , Antibody Formation/immunology , Betacoronavirus , COVID-19 , Contraceptives, Oral, Hormonal/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/immunology , Drug Repositioning , Estradiol/therapeutic use , Estrogen Replacement Therapy , Estrogens/therapeutic use , Female , Humans , Immune Tolerance/immunology , Immunity, Innate/immunology , Male , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pregnancy , Pregnancy Complications, Infectious/immunology , Progesterone/therapeutic use , Progestins/therapeutic use , SARS-CoV-2 , Selective Estrogen Receptor Modulators/therapeutic use , Severity of Illness Index , Sex Factors , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL